Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(10): 16924-16931, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36065997

RESUMO

An ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions. However, orienting individual molecules has been a standing challenge. Here, we show how single molecules, namely, Cy5 and Cy3 fluorophores, can be incorporated in a DNA origami with controlled orientation by doubly linking them to oligonucleotide strands that are hybridized while leaving unpaired bases in the scaffold. Increasing the number of bases unpaired induces a stretching of the fluorophore linkers, reducing its mobility freedom, and leaves more space for the fluorophore to accommodate and find different sites for interaction with the DNA. Particularly, we explore the effects of leaving 0, 2, 4, 6, and 8 bases unpaired and find extreme orientations for 0 and 8 unpaired bases, corresponding to the molecules being perpendicular and parallel to the DNA double-helix, respectively. We foresee that these results will expand the application field of DNA origami toward the fabrication of nanodevices involving a wide range of orientation-dependent molecular interactions, such as energy transfer, intermolecular electron transport, catalysis, exciton delocalization, or the electromagnetic coupling of a molecule to specific resonant nanoantenna modes.


Assuntos
Nanopartículas , Nanotecnologia , Nanotecnologia/métodos , DNA/química , Oligonucleotídeos , Corantes Fluorescentes/química
2.
J Phys Chem B ; 125(50): 13718-13729, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34902969

RESUMO

Studying the structural dynamics of lipid membranes requires methods that can address both microscopic and macroscopic characteristics. Fluorescence imaging is part of the most used techniques to study membrane properties in various systems from artificial membranes to cells: It benefits from a high sensitivity to local properties such as polarity and molecular orientational order, with a high spatial resolution down to the single-molecule level. The influence of embedded fluorescent lipid probes on the lipid membrane molecules is however poorly known and relies most often on molecular dynamics simulations, due to the challenges faced by experimental approaches to address the molecular-scale dimension of this question. In this work we develop an optical microscopy imaging method to probe the effect of fluorophores embedded in the membrane as lipid probes, on their lipid environment, with a lateral resolution of a few hundreds of nanometers. We combine polarized-nonlinear microscopy contrasts that can independently address the lipid probe, by polarized two-photon fluorescence, and the membrane lipids, by polarized coherent Raman scattering. Using trimethylamino derivative 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) as model probes, we show that both probes tend to induce an orientational disorder of their surrounding lipid CH-bonds in 1,2-dipalmitoylphosphatidylcholine (DPPC) lipids environments, while there is no noticeable effect in more disordered 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid membranes.


Assuntos
Microscopia , Fosfatidilcolinas , Corantes Fluorescentes , Bicamadas Lipídicas , Lipídeos de Membrana
3.
Biomed Opt Express ; 8(7): 3343-3359, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717571

RESUMO

We present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 µm axial and 0.4 µm lateral resolution maintained over a depth of 40 µm, while preserving the advantages of Fourier domain OCM. Our system uses an ultra-broad spectrum from a supercontinuum laser source. As the spectrum spans from near-infrared to visible wavelengths (240 nm in bandwidth), we call the system visOCM. The combination of such a broad spectrum with a high-NA objective creates an almost isotropic 3D submicron resolution. We analyze the imaging performance of visOCM on microbead samples and demonstrate its image quality on cell cultures and ex-vivo brain tissue of both healthy and alzheimeric mice. In addition to neuronal cell bodies, fibers and plaques, visOCM imaging of brain tissue reveals fine vascular structures and sub-cellular features through its high spatial resolution. Sub-cellular structures were also observed in live cells and were further revealed through a protocol traditionally used for OCT angiography.

4.
Biomater Sci ; 5(5): 966-971, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28282092

RESUMO

We report a bioinspired multifunctional albumin derived polypeptide coating comprising grafted poly(ethylene oxide) chains, multiple copies of the HIV TAT derived peptide enabling cellular uptake as well as mitochondria targeting triphenyl-phosphonium (TPP) groups. Exploring these polypeptide copolymers for passivating gold nanoparticles (Au NPs) yielded (i) NIR-emitting markers in confocal microscopy and (ii) photo-thermal active probes in optical coherence microscopy. We demonstrate the great potential of such multifunctional protein-derived biopolymer coatings for efficiently directing Au NP into cells and to subcellular targets to ultimately probe important cellular processes such as mitochondria dynamics and vitality inside living cells.


Assuntos
Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Mitocôndrias/ultraestrutura , Peptídeos/química , Albumina Sérica/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Células HeLa , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/ultraestrutura , Microscopia Confocal/métodos , Compostos Organofosforados/química , Polietilenoglicóis/química , Temperatura , Compostos de Terfenil/química
5.
Sci Rep ; 7: 43275, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230188

RESUMO

We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Dinâmica Mitocondrial , Imagem com Lapso de Tempo/métodos , Células HeLa , Humanos , Coloração e Rotulagem/métodos
6.
Biomed Opt Express ; 8(12): 5637-5650, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29296493

RESUMO

In recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels displays the vascular network and amyloid deposition in 5xFAD mice, an important model of Alzheimer's disease (AD). Finally, the OPT images are compared with histological slices.

7.
J Biomed Opt ; 21(12): 126019, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009028

RESUMO

We present a phase-shifting quantitative phase imaging technique providing high temporal and spatial phase stability and high acquisition speed. A piezoelectric microfabricated phase modulator allows tunable modulation frequencies up to the kHz range. After assessing the quantitative phase accuracy with technical samples, we demonstrate the high acquisition rate while monitoring cellular processes at temporal scales ranging from milliseconds to hours.


Assuntos
Técnicas Citológicas/métodos , Interferometria/métodos , Imagem Óptica/métodos , Dictyostelium , Desenho de Equipamento , Escherichia coli , Células HeLa , Humanos , Interferometria/instrumentação , Microscopia de Vídeo , Imagem Óptica/instrumentação
8.
Nano Lett ; 16(10): 6236-6244, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629492

RESUMO

There is a continuous demand for imaging probes offering excellent performance in various microscopy techniques for comprehensive investigations of cellular processes by more than one technique. Fluorescent nanodiamond-gold nanoparticles (FND-Au) constitute a new class of "all-in-one" hybrid particles providing unique features for multimodal cellular imaging including optical imaging, electron microscopy, and, and potentially even quantum sensing. Confocal and optical coherence microscopy of the FND-Au allow fast investigations inside living cells via emission, scattering, and photothermal imaging techniques because the FND emission is not quenched by AuNPs. In electron microscopy, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) analysis of FND-Au reveals greatly enhanced contrast due to the gold particles as well as an extraordinary flickering behavior in three-dimensional cellular environments originating from the nanodiamonds. The unique multimodal imaging characteristics of FND-Au enable detailed studies inside cells ranging from statistical distributions at the entire cellular level (micrometers) down to the tracking of individual particles in subcellular organelles (nanometers). Herein, the processes of endosomal membrane uptake and release of FNDs were elucidated for the first time by the imaging of individual FND-Au hybrid nanoparticles with single-particle resolution. Their convenient preparation, the availability of various surface groups, their flexible detection modalities, and their single-particle contrast in combination with the capability for endosomal penetration and low cytotoxicity make FND-Au unique candidates for multimodal optical-electronic imaging applications with great potential for emerging techniques, such as quantum sensing inside living cells.


Assuntos
Ouro , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão , Imagem Multimodal , Nanodiamantes , Células A549 , Animais , Endocitose , Células HeLa , Humanos , Macrófagos/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Organelas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...